Decision Trees in Data Mining
In this chapter, I explain what happened to make data become so much more available and where Big Data emerged from. I will show what can be searched for in these data and what tools are needed for mining the data. The differences and similarities between a classification and regression are described. Then, the focus is moved to decision trees and classical methods in their induction, but the presentation should not be treated as an extensive overview of this wide area of research. The most important information about decision trees is provided, and this subjective selection is intended to be helpful in understanding the proposed global approach. Finally, the related works on applying evolutionary computation in decision trees are studied.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 106.99 Price includes VAT (France)
Softcover Book EUR 137.14 Price includes VAT (France)
Hardcover Book EUR 137.14 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
In a regression, the independent features are called regressors.
We assume that the tree has at least one internal node and is not reduced to just one leaf.
ID3 stands for Iterative Dichotomiser 3.
References
- Chen C, Zhang C (2014) Inf Sci 275:314–347 ArticleGoogle Scholar
- Wu P, Cheng C, Kaddi C, Venugopalan J, Hoffman R, Wang M (2017) IEEE Trans Biomed Eng 64(2):263–273 ArticleGoogle Scholar
- Zhong R, Huang G, Lan S, Dai Q, Chen X, Zhang T (2015) Int J Prod Econ 165:260–272 ArticleGoogle Scholar
- Gungor V, Sahin D, Kocak T, Ergut S, Buccella C, Cecati C, Hancke G (2013) IEEE Trans Ind Inform 9(1):28–42 ArticleGoogle Scholar
- Emani C, Cullot N, Nicolle C (2015) Comput Sci Rev 17:70–81 ArticleMathSciNetGoogle Scholar
- Gupta U, Gupta A (2016) J Int Bus Res Mark 1(3):50–56 Google Scholar
- Fayyad U, Uthurusamy R (2002) Commun ACM 45(8):28–31 ArticleGoogle Scholar
- Vassiliadis P (2009) Int J Data Warehous Min 5(3):1–27 ArticleGoogle Scholar
- Wu X, Zhu X, Wu G, Ding W (2014) IEEE Trans Knowl Data Eng 26(1):97–107 ArticleGoogle Scholar
- Fayyad U, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (1996) Advances in knowledge discovery and data mining. AAAI Press Google Scholar
- Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning. Springer, Berlin MATHGoogle Scholar
- Duda O, Heart P, Stork D (2001) Pattern classification. 2nd edn. Wiley, New York Google Scholar
- Mitchell T (1997) Machine learning. McGraw-Hill, New York Google Scholar
- Hand D, Mannila H, Smyth P (2001) Principles of data mining. The MIT Press, Cambridge Google Scholar
- McGarry K (2005) Knowl Eng Rev 20(1):39–61 ArticleGoogle Scholar
- Domingos P (2012) Commun ACM 55(10):78–87 ArticleGoogle Scholar
- Liu H, Hussain F, Tan C, Dash M (2002) Data Min Knowl Discov 6(4):393–423 ArticleMathSciNetGoogle Scholar
- Kotsiantis S (2013) Artif Intell Rev 39:261–283 ArticleGoogle Scholar
- Rokach L, Maimon O (2014) Data mining with decision trees: theory and applications, 2nd edn. World Scientific Google Scholar
- Polikar R (2006) IEEE Circuits Syst Mag 6(3):21–45 ArticleGoogle Scholar
- Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Google Scholar
- Quinlan J (1993) C4.5: programs for machine learning. Morgan Kaufmann, San Francisco Google Scholar
- Murthy S (1998) Data Min Knowl Discov 2:345–389 ArticleGoogle Scholar
- Utgoff P (1989) Connect Sci 1(4):377–391 ArticleGoogle Scholar
- Llora X, Wilson S (2004) Mixed decision trees: minimizing knowledge representation bias in LCS. In: Proceedings of GECCO’04. Lecture notes in computer science, vol 3103, pp 797–809 ChapterGoogle Scholar
- Yildiz O, Alpaydin E (2001) IEEE Trans Neural Netw 12(6):1539–1546 ArticleGoogle Scholar
- Loh W-Y (2014) Int Stat Rev 82(3):329–348 ArticleMathSciNetGoogle Scholar
- Quinlan J (1986) Mach Learn 1(1):81–106 Google Scholar
- Kass G (1980) Appl Stat 29(2):119–127 ArticleGoogle Scholar
- Brodley C, Utgoff P (1995) Mach Learn 19(1):45–77 Google Scholar
- Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth and Brooks, Monterey Google Scholar
- Murthy S, Kasif S, Salzberg S (1994) J Artif Intell Res 2:1–33 ArticleGoogle Scholar
- Gama J, Brazdil P (1999) Intel Data Anal 3(1):1–22 ArticleGoogle Scholar
- Quinlan J (1992) Learning with continuous classes. In: Proceedings of AI’92, pp 343–348 Google Scholar
- Torgo L (1997) Functional models for regression tree leaves. In: proceedings of ICML’97. Morgan Kaufmann, pp 385–393 Google Scholar
- Hayfil L, Rivest R (1976) Inf Process Lett 5(1):15–17 ArticleGoogle Scholar
- Brassard G, Bratley P (1996) Fundamentals of algorithmics. Prentice Hall Google Scholar
- Rokach L, Maimon O (2005) IEEE Trans SMC C 35(4):476–487 Google Scholar
- Esposito F, Malerba D, Semeraro G (1997) IEEE Trans Pattern Anal Mach Intell 19(5):476–491 ArticleGoogle Scholar
- Quinlan J (1987) Int J Man Mach Stud 27:221–234 ArticleGoogle Scholar
- Bobrowski L (1996) Piecewise-linear classifiers, formal neurons and separability of the learning sets. In: Proceedings of 13 ICPR. IEEE computer society press, pp 224–228 Google Scholar
- Czajkowski M, Kretowski M (2014) Inf Sci 288:153–173 ArticleGoogle Scholar
- Shah S, Sastry P (1999) IEEE Trans SMC C 29(4):494–505 Google Scholar
- Vogel D, Asparouhov O, Scheffer T (2007) Scalable look-ahead linear regression trees. In: Proceedings of KDD’07. ACM Press, New York, pp 757–764 Google Scholar
- Wang Y, Xia S, Wu J (2017) Knowl-Based Syst 120:34–42 ArticleGoogle Scholar
- Kozak J (2019) Decision tree and ensemble learning based on ant colony optimization. Springer, Berlin Google Scholar
- Freitas A (2002) Data mining and knowledge discovery with evolutionary algorithms. Springer, Berlin Heidelberg Google Scholar
- Chai B, Huang T, Zhuang X, Zhao Y, Sklansky J (1996) Pattern Recognit 29(11):1905–1917 ArticleGoogle Scholar
- Cantu-Paz E, Kamath C (2003) IEEE Trans Evol Comput 7(1):54–68 ArticleGoogle Scholar
- Ng S, Leung K (2005) Induction of linear decision trees with real-coded genetic algorithms and k-D trees. In: Proceedings of IDEAL’05. Lecture notes in compter science, vol 3578, pp 264–271 Google Scholar
- Tan P, Dowe D (2004) MML inference of oblique decision trees. In: Proceedings of AJCAI’04. Lecture notes in computer science, vol 3339, pp 1082–1088 Google Scholar
- Kretowski M (2004) An evolutionary algorithm for oblique decision tree induction. In: Proceedings of ICAISC’04. Lecture notes in artificial intelligence, vol 3070, pp 432–437 Google Scholar
- Vilalta R, Drissi Y (2002) Artif Intell Rev 18(2):77–95 ArticleGoogle Scholar
- Barros R, Basgalupp M, Freitas A, Carvalho A (2014) IEEE Trans Evol Comput 18(6):873–892 ArticleGoogle Scholar
- Karabadji N, Seidi H, Bousetouane F, Dhifi W, Aridhi S (2017) Knowl-Based Syst 119:166–177 ArticleGoogle Scholar
- Frank E, Hall M, Witten I (2016) The WEKA workbench. Online appendix for “data mining: practical machine learning tools and techniques”, 4th edn. Morgan Kaufmann, San Francisco Google Scholar
- Koza J (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge Google Scholar
- Koza J (1991) Concept formation and decision tree induction using genetic programming paradigm, In: Proceedings of PPSN 1. Lecture notes in computer science, vol 496, pp 124–128 Google Scholar
- Nikolaev N, Slavov V (1998) Intell Data Anal 2:31–44 ArticleGoogle Scholar
- Tanigawa T, Zhao Q (2000) A study on efficient generation of decision tree using genetic programming. In: Proceedigns of GECCO’00, pp 1047–1052 Google Scholar
- Bot M, Langdon W (2000) Application of genetic programming to induction of linear classification trees. In: EuroGP 2000. Lecture notes in computer science, vol 1802, pp 247–258 Google Scholar
- Folino G, Pizzuti C, Spezzano G (1999) A cellular genetic programming approach to classification. In: Proceedings of GECCO’99, Morgan Kaufmann, pp 1015–1020 Google Scholar
- Folino G, Pizzuti C, Spezzano G (2000) Genetic programming and simulated annealing: a hybrid method to evolve decision trees. In: EuroGP’00, Lecture notes in computer science, vol 1802, pp 294–303 Google Scholar
- Folino G, Pizzuti C, Spezzano G (2002) Improving induction decision trees with parallel genetic programming. In: Proceedings of EUROMICROPDP’02, IEEE Press, pp 181–187 Google Scholar
- Kuo C, Hong T, Chen C (2007) Soft Comput 11:1165–1172 ArticleGoogle Scholar
- Saremi M, Yaghmaee F (2018) Comput Intell 34:495–514 ArticleMathSciNetGoogle Scholar
- Papagelis A, Kalles D (2001) Breeding decision trees using evolutionary techniques. In: Proceedings of ICML’01. Morgan Kaufmann, pp 393–400 Google Scholar
- Kalles D, Papagelis A (2010) Soft Comput 14(9):973–993 ArticleGoogle Scholar
- Fu Z, Golden B, Lele S, Raghavan S, Wasil E (2003) INFORMS J Comput 15(1):3–22 ArticleMathSciNetGoogle Scholar
- Fu Z, Golden B, Lele S, Raghavan S, Wasil E (2003) Oper Res 51(6):894–907 ArticleMathSciNetGoogle Scholar
- Sorensen K, Janssens G (2003) Eur J Oper Res 151:253–264 ArticleGoogle Scholar
- Llora X, Garrell J (2001) Evolution of decision trees. In: Proceedings of CCAI’01. ACIA Press, pp 115–122 Google Scholar
- Cha S, Tappert C (2009) J Pattern Recognit Res 4(1):1–13 ArticleGoogle Scholar
- Fan G, Gray JB (2005) J Comput Graph Stat 14(1):206–218 ArticleGoogle Scholar
- Schwarz G (1978) Ann Stat 6:461–464 ArticleGoogle Scholar
- Gray J, Fan G (2008) Comput Stat Data Anal 52(3):1362–1372 ArticleGoogle Scholar
- Hazan A, Ramirez R, Maestre E, Perez A, Pertusa A. (2006) In: Applications of evolutionary computing. Lecture notes in computer science, vol 3907, pp 676–687 Google Scholar
- Barros R, Ruiz D, Basgalupp M (2011) Inf Sci 181:954–971 ArticleGoogle Scholar
- Potgieter G, Engelbrecht A (2008) Expert Syst Appl 35:1513–1532 ArticleGoogle Scholar
- Potgieter G, Engelbrecht A (2007) Appl Math Comput 186(2):1441–1466 MathSciNetGoogle Scholar
- Sprogar M (2015) Genet Program Evolvable Mach 16:499 ArticleGoogle Scholar
- Rivera-Lopez R, Canul-Reich J (2018) IEEE Access 6:5548–5563 ArticleGoogle Scholar
- Ferreira C (2006) Gene expression programming: mathematical modeling by an artificial intelligence. Springer, Berlin Google Scholar
- Wang W, Li Q, Han S, Lin H (2006) A preliminary study on constructing decision tree with gene expression programming. In: Proceedings of ICICIC’06. IEEE computer society, vol 1, pp 222–225 Google Scholar
- Jedrzejowicz J, Jedrzejowicz P (2011) Expert Syst Appl 38(9):10932–39 ArticleGoogle Scholar
- Vukobratovic B, Struharik R (2016) Microprocess Microsyst 45B:253–269 ArticleGoogle Scholar
- Barros R, Basgalupp M, Carvalho A, Freitas A (2012) IEEE Trans SMC C 42(3):291–312 Google Scholar
- Podgorelec V, Sprogar M, Pohorec S (2013) WIREs Data Min Knowl Discov 3:63–82 ArticleGoogle Scholar
Author information
Authors and Affiliations
- Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland Marek Kretowski
- Marek Kretowski